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Coulomb Systems Seen as Critical Systems: 
Ideal Conductor Boundaries 
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When a classical Coulomb system has macroscopic conducting behavior, its 
grand potential has universal finite-size corrections similar to the ones which 
occur in the free energy of a simple critical system: the massless Gaussian field. 
Here, the Coulomb system is assumed to be confined by walls made of an ideal 
conductor material; this choice corresponds to simple (Dirichlet) boundary 
conditions for the Gaussian field. For a d-dimensional (d~> 2) Coulomb system 
confined in a slab of thickness W, the grand potential (in units of ka T) per unit 
area has the universal term F(d/2)((d)/2dnd/2W a-l. For a two-dimensional 
Coulomb system confined in a disk of radius R, the grand potential (in units of 
kBT) has the universal term (1/6)In R. These results, of general validity, are 
checked on two-dimensional solvable models. 

KEY WORDS: Critical systems; finite-size effects; Coulomb systems; solvable 
models. 

1. I N T R O D U C T I O N  

A classical  C o u l o m b  system is a sys tem of  cha rged  par t ic les  in te rac t ing  

t h r o u g h  the C o u l o m b  poten t ia l ,  p lus  pe rhaps  some  shor t - r ange  in te rac t ion ;  
there  m a y  also be a c o n t i n u o u s  cha rged  backg round .  W e  are  in teres ted  in 

equ i l i b r i um proper t ies ,  and  use classical  (i.e., n o n q u a n t u m )  stat is t ical  

mechanics .  A C o u l o m b  sys tem m a y  have  phase  t ransi t ions;  here  we assume 
the sys tem t o ' b e  in a c o n d u c t i n g  phase.  

In  some  geometr ies ,  it has a l ready  been s h o w n  tl" 2~ tha t  the free energy  

(or  the g r and  po ten t i a l )  o f  a classical  C o u l o m b  sys tem exhibi ts  universa l  
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finite-size corrections, in close analogy with what happens in critical 
systemsJ 3-61 In Coulomb systems, although the screening effect makes the 
charge correlations short-ranged, that same screening effect makes the 
electric potential and field correlations long-rangedtTI; the critical-like 
behavior of the free energy is related to the existence of these long-ranged 
correlations. The electric potential is in some sense the analog of the order 
parameter of a critical system. 

For defining a Coulomb system with boundaries, one has to state the 
boundary conditions. In a previous paper t2~ we considered the case when 
the boundary is a plain hard wall which confines the charges. Such an 
assumption does not generate any simple boundary conditions for the 
electric potential: for a given charge distribution, the potential "leaks out," 
taking in general nonzero values outside the Coulomb system and that 
spoils the analogy with the order parameter of a critical system. 

The purpose of the present paper is to study classical Coulomb 
systems with boundaries, in the simpler case of Dirichlet boundary condi- 
tions for the electric potential: the walls, impenetrable to the particles of 
the Coulomb system, are assumed to be made of an ideal conductor 
material on which the electric potential vanishes. In general, one must also 
assume that there is some wall-particle short-range repulsion which 
prevents a particle from collapsing onto its electric image. 

Two geometries will be considered. 

(a) Slab. In d dimensions (d>~2), a Coulomb system is confined 
between two parallel ideal conductor plates separated by a distance W; the 
Coulomb system extends to infinity in the d -  1 other directions. Let ~0 be 
the grand potential per unit area. We shall show that co (times the inverse 
temperature fl) has the large-W expansion 

C(d) 
flco = A W + B +--~-g-~ + . . .  (1.1) 

The first two terms represent, respectively, the bulk and the surface con- 
tributions; the coefficients A and B are nonuniversal. However, the last 
term of (1.1) is universal, with a coefficient C(d) depending only on the 
dimension d: 

F(d/2) ( (d)  
C( d) = 2dT~d/2 (1.2) 

where F and ( are the gamma function and the Riemann zeta function. In 
particular, C(2) = n/24. 
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Before we derived the expansion (1.1), we guessed it by analogy with 
a similar expansion which is valid for a simple critical system: the massless 
Gaussian field theory. We define the partition funtion of that theory as the 
functional integral on a field ~b(r) 

exp I- 1 
where /12 =2re, /~3 =4~ ,  and more generally, for d >  2, /~a= 
(d-2)2rca/2/F(d/2). Some ultraviolet regularization is needed for avoiding 
divergences. With Dirichlet boundary conditions for ~(r) on two parallel 
plates, it was shown (3) that the free energy associated with Z G in the case 
d = 2 has a universal term - ~/24 IV. More generally, we shall show that the 
expansion of the free energy for the Gaussian field theory is of the form 
(I.1), except for a change of sign of the universal coefficient C(d). 

(b) D i sk .  A two-dimensional Coulomb system is confined in a disk 
of radius R. The boundary circle is assumed to be an ideal conductor. For 
that case, we shall show that the grand potential ~? has the large-R 
expansion 

flQ=AR 2+BR+~ln R +  .-- (1.4) 

where again the coefficients A and B of the bulk and perimeter contribu- 
tions are nonuniversal, while the term (1/6)In R is a universal finite-size 
correction. Here, too, we first guessed (1.4) by analogy with a similar 
expansion (s'6) which holds-" for the Gaussian field theory, except for a 
change of sign of the universal term. 

In two dimensions, there are exactly solvable models of Coulomb 
systems: the two-component plasma and the one-component plasma, at 
some special temperature. The general expansions (1.1) and (1.4) can be 
explicitly checked on these models. 

The critical system which is related to Coulomb systems is the mass- 
less Gaussian field theory; this relation is discussed in Section 2. Section 3 
is about the slab geometry, Section 4 about the disk geometry. The conclu- 
sion in Section 5 suggests some further research. 

2. C O U L O M B  SYSTEMS AND GAUSSIAN FIELD THEORY 

There are many signs that there is some connection between Coulomb 
systems and the Gaussian field theory. The Coulomb potential is the 

2 More general domain shapes were considered in refs. 5 and 6. 
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inverse of the properly normalized Laplacian (-1/tad)A which appears in 
(1.3). If ~b is interpreted as the electric potential, the Hamiltonian in (1.3) 

1 .f [V(b(r)]2d r H=2-~d ; ~b(r)(-A) if(r)dr = 2p---- ~ (2.1) 

is the familiar expression for the Coulomb energy in terms of the electric 
field -V~b(r). Beyond some microscopic cutoff distance, the correlations of 
the electric potential in a conducting Coulomb system are Gaussian ~7) and 
of the same form as the correlations associated with (1.3). 

However, the partition function of a Coulomb system is not identical to 
(1.3), in particular because (1.3) involves a functional integral on the poten- 
tial rather than the familiar integral on the particle positions. A Gaussian 
transformation was made in ref. 1 for relating the Coulomb system to (1.3), 
but, although this has been useful for the slab geometry of ref. 1, we have not 
been able to deal with the disk geometry by this method. 

We suggest here another approach, based on the heuristic assumption 
that the universal features of the grand partition function Sc of a conduct- 
ing Coulomb system are correctly accounted for by the functional integral 
expression 

S c = ~ p e x p [ - f l - f  drdr'p(r) (2.2) 

where p(r) is a charge density and G(r, r') the Coulomb interaction solu- 
tion of 

dG(r, r') = -pa6(r - r') (2.3) 

with the appropriate (here Dirichlet) boundary conditions. In (2.2), the 
nonuniversal particle structure of the Coulomb system is already dis- 
regarded, and some cutoff prescription has to be made. Performing now a 
change of function from the charge density p(r) to the electric potential 
~b(r), which are related to each other by 

we obtain 

A~(r) -- -/~ep(r) (2.4) 

Dp 
Sc = ~-~ z o  (2.5) 
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where Z o is the Gaussian partition function (1.3) and Dp/D~ the Jacobian 
of the transformation from p to ~b. Since 

and 

Z G = det - --1 j (2.6) 

D---~ = det - ~ (2.7) 

one obtains, from (2.5), 3 c =  1/Zc and 

In Nc = - I n  ZG (2.8) 

Thus, In S c and In ZG have the same universal term, except for its sign. 
The change of sign comes from the Jacobian Dp/Dck in (2.5), i.e., the 
replacement of the charge density by the electric potential, as already 
explained in a different language in ref. 2. 

3. SLAB 

We consider a slab in d dimensions. Let us write the d-dimensional 
position vector as r = (x, y), where y is the dth component and x stands for 
the d -  1 other components. The Coulomb fluid fills the slab between y = 0 
and y = W, where there are ideal conductor walls. 

In this section, we derive the large-W expansion (1.1) in general in two 
different ways and we check its validity on two two-dimensional solvable 
models. We make a comparison with the case of plain hard walls. 

3.1. Gaussian Field Theory Route 

For the free energy of the two-dimensional Gaussian field theory in a 
strip, with Dirichlet boundary conditions, the expansion (1.1) with 
C = - r c / 2 4  was derived in ref. 3. The relation with Coulomb systems, 
discused in Section 2, gives for Coulomb systems the expansion (1.1) with 
C = ~/24. 

These considerations can be generalized to d dimensions, for instance, 
by adapting a method used in refs. 3 and 4, as follows. By considering the 
functional integral (1.3) as a path integral on an imaginary time interval 
W, one can express (1.3) in terms of the Hamiltonian of a quantum field 
theory in d - 1  space dimensions. This Hamiltonian is a sum of terms 

1 2 fl , ,  
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where k labels all possible wave vectors in a space of dimension d -  1 and 
H k is the canonical momentum conjugate to q~k. Because of the Dirichlet 
boundary conditions q~--0 at "times" 0 and W, (1.3) is expressed in terms 
of (0, 0) matrix elements: 

( i l k )  Wk ZG = I-[ (~bk =01 e-Wtt~ Iq~k = 0 )  =l-I  (3.2) 
k k 

Therefore 

d a- I k 
f l f = - ; ~ l n ( 2 n p a  flksinh Wk) l/" (3.3) 

For subtracting off the ultraviolet divergence, it is convenient to consider 
first 

Of 1 - da-lk 
fl ~ = 5 J ~ k ctnh Wk (3.4) 

and remove the W= ~ value, which gives 

Of ~ 1 d a- lk fl-O-w=fl w= + ~ f ~ k ( c t n h  W k - 1 )  

=fl~-~fw + (d-1)F(d/2)r 
w= ~ 2ana/2 Wa (3.5) 

Thus, flf has the universal finite-size correction - C(d)/W a- ] for the 
Gaussian field theory, and (from Section 2) the correction is C(d)/W a-~ 
for a Coulomb system, with C(d) given by (1.2). 

3.2. Screening Sum Rule Route 

For the slab geometry, a more direct derivation of (1.1) is possible. It 
avoids any explicit reference to the Gaussian field theory, and therefore 
does not rely on the heuristic connection of Section 2. Instead, this deriva- 
tion uses a sum rule which expresses the perfect screening property of a 
conductor. 

Let us first consider a d-dimensional Coulomb system which fills the 
half-space y > 0, with an ideal conductor wall at y--0.  Let /~y(0) be the 
microscopic electric field at some point, say the origin 0, on the boundary 
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and /~(r) the microscopic charge density at r = ( x , y )  (y>O).  The sum 
rule is 

fl f dr y(~y(O) p( r ) )  r = _ 1 (3.6) 

where ( . . . ) r  means a truncated equilibrium statistical average: (AB)r= 
( A B ) -  (A)(B) .  One can derive ~81 (3.6) by considering the response of 
the system to an external infinitesimal point dipole p oriented along the y 
axis and located at the origin (on the Coulomb system side). This dipole 
adds to the Hamiltonian an interaction term -p~y(O), and by linear 
response theory the average charge density at r changes by ~p(r )=  
flp(~y(O) p(r)) r. Now, we assume that the Coulomb system has good 
screening properties: the induced charge density ~p(r) is localized near the 
origin and has a dipole moment which cancels p: 

f dr y 6p(r) = - p  (3.7) 

(since the dipole moment is defined with the origin chosen on the wall, 
there are no contributions of the surface charges on the ideal conductor 
wall). The sum rule (3.6) follows. 

Let us now add a second ideal conductor wall at y - -  W. The good 
screening properties imply that, if W is large, the local structure near the 
origin is unchanged, up to exponentially small effects. Therefore, the charge 
density @(r) is unchanged, its dipole moment (3.7) is unchanged [the 
integration range on y in (3.7) can be kept as (0, oo) since @(r) is localized 
near y = 0], and the sum rule (3.6) remains valid for the two-wall system. 

This sum rule (3.6) can now be used for computing a universal correc- 
tion to the pressure on the wall at y = 0. In free d-dimensional space, the 
Coulomb interaction, solution of (2.3), is 

G0(r, r') = - l n ( [ r -  r'[/a), d = 2  (3.8a) 

Go(r, r') = 1 / I r - r ' [  d-2, d > 2  (3.8b) 

(a is some irrelevant length scale). With the present boundary conditions, 
the solution of (2.3) becomes 

G(r, r ' ) =  G o ( r - r ' ) - G o ( r * - r ' ) +  ~. [Go(r+n2Wu-r') 

- -  G o ( r *  + n 2  W u  - -  r' ) + Go(  r - n 2  W u  - r' ) 

- Go(r* - n2 Wu - r ' )]  (3.9) 
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where r * =  (x, - y )  is the image of r = (x, y) with respect to the wall at 
y = 0 and where u is the unit vector along the y axis. Using 

. O G ( r ,  r') 
~y(O) = - f a r ~  ~(r) (3.10) 

Y r'=O 

we can write 

< - f ar ~ I 
- O y '  I,.=o (/~y(O) p (r ) ) r  (3.11) 

Since ( /~y(0)p(r))  r is short-ranged, we can expand OG/ay' in powers of 
W-l ,  at fixed r, with the result 

< j~y(O)2> r =  < ~y(O)2> ~v= co + e ( d - 2 ) ( d -  1) ~(d) 2a-2wa  f dry<~:,(O) p(r)> T 

(1) 
+ 0 ~ (3.12) 

where e ( d -  2) = d -  2 if d > 2 and e ( d -  2) = 1 if d = 2. Let us describe the 
short-range interaction between the wall at y = 0 and the particles by some 
potential V(y), and let n(y) be the particle number density. The pressure is 

p =  - n(y) d y -  (/~y(O) 2 ) (3.13) 

where the last term is the electrostatic pressure [if the short-range inter- 
action is an infinite barrier at Y=Yo,  - d V / d y  must be replaced by 
B - 1 6 ( y -  yo)]- Since the screening effect makes the density profile near the 
wall y = 0 independent of W (up to exponentially small corrections), the 
related average field 

(/~y(O)) = --i.t a (~ (y ) )  dy (3.14) 

is also independent of W. Thus, the pressure (3.13), where " ' (Ey(O)-) can be 
rewritten as (LOy(0)2)r+(~y(0))2,  depends on W only through (3.12). 
Using the sum rule (3.6) in (3.12) gives for the pressure p 

1)/'(d/2) ~(d) .  ^ / 1 "~ 
flp = flp( W= ~ ) + ( d -  ~a~7~_ ~--y + u ~ --~-g~ j (3.15) 
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Since o~, the grand potential per unit area, has the derivative 

&o 
O W  = - p  (3.16) 

the grand-potential expansion is indeed given by (1.1) and (1.2). 

3.3. The T w o - D i m e n s i o n a l ,  T w o - C o m p o n e n t  Plasma 

This is a two-dimensional system of particles of charges +__q. The 
model is exactly solvable (9'1~ at a special temperature fl-~ such that 
flq2 = 2. For ]~q21> 2, a point-particle model is unstable against the collapse 
of pairs of oppositely charged particles; we work with almost-point par- 
ticles, introducing some short-distance cutoff in the interaction. In presence 
of ideal conductor walls, for flq2>~ 1 the model would also be unstable 
against the collapse of a particle onto its electric image, unless some short- 
distance cutoff is also introduced in the wall-particle attraction. 

In two dimensions, it is convenient to represent a position r = (x, y) by 
the complex coordinate z = x +  iy, and the Coulomb interaction (3.9) can 
be explicitly summed into 

G(r, r') = - In ]sinhsinh k(Zk( z -- z')f ) (3.17) 

where k =  rc /2W (this result can also be obtained by a conformal transfor- 
mation from the half-plane). The calculation for the present strip geometry 
is very similar to the one which has already been done ('~) for the half-plane 
with only one ideal conductor wall. We start with a lattice model to avoid 
the collapse of positive and negative particles. There are two interwoven 
lattices L+ and L_  with N+ and N_ sites. The complex coodinates of 
the sites of L+ (resp. L_ )  are {u~},<i~<N+ (resp. {vi},<~<u_). Positive 
particles can be on the sites of L+ and negative ones on those of L_ .  
Each site contains at most one particle. We work in the grand canonical 
ensemble and denote the fugacity by (. The interaction between two par- 
ticles is given by (3.17), and furthermore each particle has a self-inter- 
action 3 - (q?/2) In lak / s inh  k ( z  - f) l- Writing 

sinh k ( z  - z ' )  = l e - k ( ~ + ~ ' ) ( e ~  -- e ~-'') (3.18) 

and using exp(2ku) and exp(2kv) instead of u and v in the Cauchy 
double alternant formula, we can follow the same steps as in ref. 11 and 

3 In Eq. (2.3c) of ref. 11, exponents I/2 are missing for the first two factors on the r.h.s. 
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we obtain for the grand partition function S =  det(1 + K), where K is the 
matrix 

K= \sinh k(ui- ~/) )11 ~/<~ lV+<~i<~lV+ 
~( -iak~ 
\ \sinh k(gi- u.i))l ~i<~N_ 

] <~ j~N+ 

iak( 
( sinhk(ui-vJ))ll~'~'~+-)- iak~ "~ (3.19) 

\sinh k(Oi- vj)J , <_,~ ~_/ 

We now consider the continuum limit where the lattice spacing goes to 
zero. We define the rescaled fugacity m = 2na(/S, where S is the area of a 
lattice cell. The eigenfunctions (0, X) of m-'K and its eigenvalues 1/2 are 
defined by the two coupled integral equations 

1 1 , 

4-~f d~-r'[sinhk-(z_z_,)tp(r')+sinhk(z_z,)X(r )j=@(r) (3.20a) 

-iRfnd2r, [ 1 1 ] 
414,"  s inhk( f_~ , )~( r ' ) - t  sinhk(___z,)X(r') =x(r)  (3.20b) 

where the domain of integration D is the strip. In terms of these eigen- 
values, 

By using the equality 

Ofsinhk(z_z,)= ~ ( r -  r'), r,r'eD (3.22) 

we can transform the integral equations (3.20) into the differential equa- 
tions 

O 
2 _ ~, = 2i x and 2 ~ ix = 2~b (3.23) 

In terms of the Dirac operator 6.  V, these equations have the familiar I~~ 
form 

(~. V) ~ = , t ~  (3.24) 

where here ~ is the spinor (0, ix). These equations can be combined into 
the Laplacian eigenvalue problem 

s0  =,l-'~ (3.25) 
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with boundary conditions given by the integral equations (3.20): 

~b(x, O) = -Z(x ,  0) and ~,(x, W)=7.(x, W) (3.26) 

(incidentally, with such boundary conditions, - A  turns out to be non- 
Hermitian). We look for a solution of the form 

~(x,y)=eiVX(Aee-"+Be -ay) with l=i(v2+22) 1/2 (3.27) 

The boundary conditions give two linear homogeneous equations for the 
coefficients A and B. The determinant of this system must be zero for a 
nonvanishing solution to exist. This gives the relation between v and 2: 

cosh[ W(v 2 + 22) '/2 ] - 2 sinh[ W(v 2 + 22) 1/2 ] 
(v 2 + 22)1/2 = 0 (3.28) 

Let us define the entire function 

sinh[ W ( v  2 AI- z2)1/2]] 
1 cosh[ W(v 2 + z2) l/z ] - z  

f ( z )  cosh vW i ~ z ~  J (3.29) 

The solutions of (3.28) are the zeros o f f  and we have f (0 )  = 1, so 

(3.30) 
). ~ f - l ( o )  

Therefore, for each value of v, a partial summation of (3.21) can be made, 
giving for the grand potential co per unit length 

I f  +~ ( 2 )  1~ +~~ rico= --~n dv ln 1-[ 1+ = --n :o dv ln f ( - m )  (3.31) 
--c.~ 2 E f - - l (o  

Now, in the limit W ~  oo, 

/ / I  
ln f ( - m ) -  WE(v2.-bm2)ll2-lvl].-bln(1W (v2..bm2)l/2 ) 

- l n ( 1  + e  -2 lot w) + O(e-, ,w) (3.32) 

The first term gives the bulk contribution to the grand potential, the 
second the surface term, and the third the universal finite-size correction. 
The bulk and surface terms would diverge if we did not take into account 
the particle-particle and particle-wall short-range repulsion. We can do so, 
for a repulsion of range a, by introducing a cutoff Vm~x = I/a. 
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as 

where 

and 

The final result for the grand potential per unit length can be written 

7~ 
floo = --~Pb W+ 2[3),~ + 2 ~ +  O(e -.,w) (3.33) 

flPb = In - -  + 1 mo" 
(3.34) 

f l Y c - 5 (  l n 2  2 )  = - - +  1 - (3.35) 
mtr 

The bulk pressure Pb is essentially the same as the one found for an infinite 
system, c~~ up to a slightly different cutoff prescription. The surface grand 
potential yc for ideal conductor walls is given by (3.35). Finally, we find the 
finite-size correction C(2)/W= rt/24 W, as expected. 

In the argument of Section 3.2, it was assumed that the local structure 
near one wall is unchanged, up to exponentially small corrections, by the 
presence of another wall at a large distance W. This assumption can be 
explicitly verified on the present model, by a calculation of the one-body 
and many-body densities, by the same method as in some previous 
work. ()~ ~2) These densities can be expressed in terms of Green functions 
gs.e(r, r') (s, s ' =  + 1). The one-body density of particles of sign s is ns(r)= 

1 l ( 2 ) T (  - ~___ tugs,(r, r), the two-body truncated densities are ~.~, ,r, r') -m2g~s,(r, r), 
etc. The matrix g is defined by g =m- lK(1  + K )  - l ,  and therefore g++ and 
g_ + satisfy the integral equations 

im r , V 1 
g+ +(r,, r2) + d-r L sinhk~z,_ff)g++(r, r2) 

+ [ 
sinh k ( z  I - z) g -  +(r, r2)] 

i 

4Wsinh k ( z l  - z2) 

im r " I 1 
g_+(r l ,  r2)--~-~JDd-r sinh k(-:?,-zT) g++(r, r2) 

1 ] 
+ sinh k('f I - z) g -  +(r, r2) 

- i  
4 W sinh k(zl -- z2 ) 

(3.36a) 

(3.36b) 
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(similar equations hold for g__ and g+ _). Differentiating these equations 
with respect to f~ and z~, respectively, we find differential equations which 
can be combined into 4 

(m 2 --/11) g+ +(rl, r2) = m6(rl -- r2) (3.37a) 

g_+(rl,r2)----i(ff-~l+" 0 t ~Yl/g+ +(rl, rE) (3.37b) 
- - m  

Again the boundary conditions are given by the integral equations: 

g++(xl,  0; r2) = --g_+(xt,  0; r2) 

g++(xl,  W; r z )=g -+ (x l ,  IV; r2) 
(3.38) 

For the present geometry it is useful to work with the Fourier transforms 
defined by 

f 
+oo d/  

g(rl, r2)= -o~ ~ g(Yl, Y2, l) e it~x' -.,.2) (3.39) 

The solution for ~ + + is 

g+ +(Yl, Y~, l) = m e -K ly,-y,.I 
- 2 ~  

{, + ~ [(K+I) e~lY,+Y2)- '~w-(x-l)  e -~y~§247 

m ( x - m ) e - ~ W c o s h  x(y  I -Y2)~ 
K J 

x [ ( x - m )  e - ' w +  ( x + m )  e "w] -1 (3.40) 

with x=( lZ+m2)  m. As W--* +oo for fixed values ofyl  and Y2, one finds 
after some manipulations 

~ 
~++(y~,y,_, l)=2-s exp ( -x  lY,-Y2[) 

x - l - m  } 
-I-x+l+-----------~exp[-~:(y~+y2)] +O(e - ' w )  (3.41) 

4 Refs. 10 and 11 use slightly different representations of the operator K. In the present section, 
following ref. 11 rather than ref. 10, we have in Eq. (3.24) a spinor ~ = (0, iX) rather than 
(0, X) and now a g_ § which is i time the g_ § of ref. 10. This has no effect on the physical 
quantities. 
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Up to an exponentially small term, this expression is the same one as in the 
case of one ideal conductor wall [see Eq. (3.24) of ref. 10]. There is 
no algebraic correction in 1/W. This confirms our basic assumption of 
Section 3.2 that the correlation functions are unchanged, up to exponen- 
tially small effects, by the presence of the second wall. 

3.4. The Two-Dimensional ,  One-Component  Plasma 

This is a Coulomb system with only one species of mobile particles, of 
charge q, embedded in a background carrying a uniform charge density of 
the opposite sign. In two dimensions, the model is exactly solvable t~3" 141 
when flq2 = 2. The half-plane geometry, with only one ideal conductor wall, 
has already been studied. ~5) Since the particles repel each other, there is no 
pair collapse and one can deal with point particles. In the presence of ideal 
conductor walls, however, one should prevent the collapse of a particle 
onto its electric image; here we shall assume that an infinite potential 
barrier keeps the particles away from the walls by a distance e, while the 
background extends up to the walls (this is slightly different from what has 
been assumed in ref. 15). 

For the present strip geometry, the simplest approach is to take an 
appropriate limit of the two-component case. Instead of one fugacity, one 
can introduce different fugacities for positive and negative particles and 
make the negative particle fugacity go to zero. Furthermore, a uniform 
background of charge density -qr /  generates an electric potential 
- n q t l y ( W - y )  (which has the correct Laplacian 2rcqr/and vanishes on the 
walls at y = 0  and y =  W); this potential can be taken into account by 
replacing the constant fugacity ( of the positive particles by a position- 
dependent fugacity ( e x p [ 2 n r / y ( W - y ) ]  (here f lq2=2) and adding to the 
grand potential the background self-energy, which is (1/6)fl-lrttl2W 3 per 
unit length. Then, the set of equations (3.20) reduces to one equation 

i2 r 2 , e2n'tY'(w-Y') 
4--WJo d r sinh(n/2 W)(z - f ')  qJ(r') = if(r) (3.42) 

where D now is the strip between y = e and y = W -  e. 
Since z - ~" does not vanish if r, r' e D, (3.42) indicates that ~k(r) is an 

analytical function of z. Because of the translational invariance along the x 
axis, ~ must depend on x through a factor exp(ivx) ,  and therefore 
ff = exp(ivz).  Using this r in (3.42) and performing the integral upon x' 
gives the relation between v and 2 

2 f w - ,  e 2t''ly'~w-.'')+':''] d y ' =  1 (3.43) 
e 2 wL, + 1 % 
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Using this ;t in (3.21) (with the background self-energy added), performing 
the integral upon y', and making the change of variable v = 2nr/Wt, gives 
for the grand potential 

nr/2 W 3 
-flco = 6 

+ o~ f m e nW2q( l + 4t2)/2 
+ 2r/W ~O dt ln ~ l + 2-~)U2 2 cosh(2rtr/W2t ) 

X [ erf ((2nr/) ./z W ( ~ - t - w )  ) 

+erf( (2~zr/ ) l /2W(~+t--- -~))]}  (3.44) 

where erf is the error function. Now we split the integral over t into an 
integral going from 0 to 1/2 and another one going from 1/2 to + ~ .  We 
write 

~r/2 W 3 p I/2 
= 2 r / W ]  lne-n'tw'-((-2tl2/2dt (3.45) 

6 J0 

and add this term to the first integral. The resulting integral from 0 to 1/2 
can be separated into three terms, which give, in the limit W-o + oo, up to 
terms more small than exponential, the bulk pressure, a first contribution 
to the surface grand potential, and the universal finite-size correction: 

f 1/2 flP b W = 2 Wr/ dt In - -  - 
"~0 

m m 
(2r/)~/2 =r /Win (2r/)l/z (3.46) 

-2fly(cIl= lim 2Wr/ dtln e -'lw'~l-2'~'/z 
W~oc "~0 

erf((27u/)'/2 W(�89 - t -- e/W)) + erf((2rrr/)'/2 W(�89 + t - e/W))] 
+ 2 J 

(3.47) 

(~ )1 /2  ~0+~ { (2r/)'/2 = -  dt ln e -'2 -- 
m 

, ) - - + ~  [1 +erf(t-(2rer/)u2e)] dt 

(3.48) 

n - 2 Wr/~.o § ~ e-4"qw'- ' )  24 W = dt In( 1 + (3.49) 

822/82/3-4-2 
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The integral from 1/2 to + ~ contributes only to the surface grand poten- 
tial; it can be reexpressed as 

- 2fly~c =~ = dt In 1 m ,_, _erf(t+e(2rt~l)l/2)] } + 2(2r/)1/2 e [1 

(3.50) 

The final result for the grand potential is 

floo = - f l P b  W +  2fl(y~')+ ,~2)) zt 
Yc + 2 ~  + "" 

(3.51) 

3.5. Str ip w i t h  Plain Hard Wal ls  

The solvable two-dimensional models can also be used for studying 
the case of a strip with plain hard walls. The walls confine the particles, but 
there is no Dirichlet boundary condition for the electric potential, which 
freely "leaks out." The Coulomb interaction is just the free space one 
- l n ( I r - r ' l / a ) .  In that case, there is no finite-size correction of order 1/W 
in the grand potential or free energy per unit length of the strip, as shown 
hereafter. 

For the two-component plasma, the grand partition function is still 
given by (3.21) and (3.25), but the boundary conditions now are as follows: 

�9 On the boundary y = 0, f = go, 0f /0~ =/~o. 

�9 On the boundary y = IV, f = g w, 0ff/0f =/ ,  w- 

Here go, ho (resp. gw, hw) are analytical functions in the domain y < 0  
(resp. y > W) vanishing at infinity. For f of the form (3.27), these bound- 
ary conditions become 

0f  
f (x ,  0) = 0, ~ (x, W) = 0 (v > 0) (3.52a) 

0f 
@(x, W)=0 ,  ~-~ (x, 0) = 0 (v <0 )  (3.52b) 

For each value of v, these equations give two linear homogeneous equa- 
tions for the coefficients A and B, the compatibility of which leads to the 
relation 

sinh[ W(v 2 + 22) 1/2] _ 0 (3.53) 
cosh[ W(v2+22)'/2I + Ivl (v2 + 2_,),_, 
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instead of (3.28). Now 

e-  ~lvl {cosh[ W(v 2 + z2) 1/2] + Ivl f(z)  

and, in the limit W--+ oo, 

In f ( - m ) - W [ ( v 2 W m 2 ) i / 2 - l v l ] + l n [ ~ ( l +  

sinh[ W(v = + Z2)1/21l 
iv--~ 7 ) ~  j (3.54) 

Ivl "~ I + O(e -"  w) 
(02 + m 2) 112j] 

(3.5) 
which gives for the grand potential oo per unit length 

tim = -flPb W+ 2fl7 + O(e - 'w)  (3.56) 

The bulk pressure Pb is the same as in (3.34), as expected. The surface 
grand potential 7 is now given by 

(a known result( 'm). And there is no finite-size correction except for an 
exponentially small one. 

For the one-component plasma in a strip with plain hard walls, the 
canonical free energy has been computed in ref. 16. In our notation, with 
the de Broglie wavelength and the length a in the logarithmic potential 
taken as unity, the result for the free energy f per unit length is 

(flail2 r e r f (Y+t )+er f (Y- t )  
f l f = W 2 1 n - ~ n z - 2 \ 2 n /  fo dtln 2 (3.58) 

where Y= W(nr#/2) ~/2 and erf is the error function. In the large-W limit one 
finds 

r/ ~P-~/,-- 2 ( r / ~  I/2 ~o 1 +eft(t)  e -'~ 
f l f~ W21n 2n- \ 2 n J  dtln ---------~--- + 4~2r/]/2W2 + -.- (3.59) 

The first term corresponds to the bulk free energy, the second one to the 
surface free energies (~7) on both boundaries, and the next term is indeed 
more than exponentially small; there is no algebraic finite-size correction. 

4. DISK 

This section is about a two-dimensional case: a Coulomb system is a 
disk of radius R, with an ideal conductor boundary. We derive the expan- 
sion (1.4) in general, and check it on two solvable models. 
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4.1. General  Der ivat ion 

We have not been able to make a direct derivation of (1.4) using, for 
instance, screening properties of the Coulomb system. We can only rely on 
the heuristic method of Section 2, leading to the relation (2.8) between the 
Coulomb system and the Gaussian field theory. For the latter, it has been 
shown ~5"6"18) that - l n  Z o has a universal finite-size term --(1/6) lnR.  
From (2.8), we obtain (1.4). 

4.2. The T w o - C o m p o n e n t  Plasma 

The two-component plasma model, at F =  2, is also solvable in the 
present geometry. In terms of complex coordinates z = re i~ with the origin 
at the center O of the disk, the Coulomb potential solution of (2.3) with 
Dirichlet boundary conditions is obtained by the method of images as 

R ( z - z ' )  1 G(r, r') = - I n  z~,_R2 

As in Section 3.3, we obtain (3.21) for the grand partition function. Now 
the sum is on the eigenvalues 2 defined by the two coupled integral equa- 
tions 

2---I2rr D d2r' ( ~  ~k(r') + ~-}-~' z ( r ' ) )  = ~ k ( r ) - -  (4.1a) 

2 Iz~d2r'( 1 z - z  lx-R ) 7------= ~b(r') + Zz; _----~2 x(r') =x(r)  (4.1b) 

where the domain of integration D is the disk. Using the equality 

0 1 
O~. z - z; = n6(r - r') (4.2) 

we again find the Laplacian equation (3.25) with now the boundary condi- 
tion X = ei~ b, i.e., 

leio['O i Ox~ O) r=R ~-~r+r-~)tp(r,O)-e'~ = 0  (4.3) 

(again, - A  is non-Hermitian with that boundary condition). 
Because of the circular symmetry, we look for eigenfuntions of the 

form 

~=Ii(2r)e il~ l eZ  (4.4) 
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where 11 is a modified Bessel function. The boundary condition (4.3) 
imposes 

I[(2R) - ~ R  I/()'R) - I1(3"R) = 0 (4.5) 

i.e., 

t ,  + , ( , I R )  - 6 ( , t R )  = o (4.6) 

All the eigenvalues 2 are obtained by taking, for each value of l e Z, all the 
nonzero roots of (4.6). Since (4.6) is invariant under the transformation 
I--* - 1 -  1, it is enough to consider the eigenvalues 2/ associated to le IN, 
counting each of them twice. Then, as in Section 3.3, for each value of I a 
partial summation of (3.21) can be made by noting that the corresponding 
eigenvalues 21 are the zeros of the function fl(z): 

(2), 
f t (z)=l!  -~  [I i (zR)-I t+,(zR)] ,  l>~0 (4.7) 

The prefactor in (4.7) has been chosen in such a way that fj(0) = 1. There- 
fore, the entire function f~(z) can be written as the product 

and 

f/(z) = I~,l (1 - ~ )  (4.8) 

( m )  ( m )  
~ l n  1 + ~  =ln I ]  I 1 + ~  = I n f / ( - m )  (4.9) 

making (3.21) a sum on l only: 

' } I n ~ = 2  ~ In l! ~ [Ii(mR)+Ii+l(mR)] (4.10) 
/ = 0  

For obtaining a large-R asymptotic expansion of (4.10), one can use 
the Debye expansion (19~ of Ii(mR). This expansion is the one which is 
appropriate here, since both mR and l become large. It is convenient to 
split (4.10) as 

ln~=S~ + $2 (4.11) 
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where 

2 t 

) 1 (4.12) 

and 

Ij+ l(mR)] 
S,_=2 --  In 1-t ~ - ( - ~  (4.13) 

J I = 0  

since S~ is In 3 for a plain hard wall boundary and has already been 
evaluated in ref. 2. As to $2, rewritten and cut off as 

$2 = 2 In 1 4 Ir r~R (4.14) 
/ = 0  

it can be evaluated by similar techniques, using the Debye expansion of Iz 
and I; ,  and using for the sum on l the Euler-MacLaurin summation for- 
mula. If we now take into account the particle-particle and particle-wall 
short-range repulsions by choosing the cutoff as L = R/a, we find 

S~=mRln 2 1  ~ ( - - ~ )  - - + ~ l n 2 - -  + O  
- m a  

(4.15) 

In (4.15), all terms which vanish as the cutoff--+ oo have already been 
removed. 

Adding Sl (from ref. 2) and $2, one finds for the grand potential O, 
in the case of an ideal conductor boundary, 

1 
fir2 = -- In ~ = - f lpbltR 2 + fl?c2nR + -6 In mR 

5 1 
- 1--~-~ In 2 -  2~"( - 1) + ~ +  ... (4.16) 

where the bulk pressure Pb and the surface grand potential Yc are, as 
expected, given by the same expressions (3.34) and (3.35) as in the strip 
geometry. Equation (4.16) has the expected universal finite-size correction 
(1/6) In R. 

One should note that there is no In R term in $2; it comes entirely 
from Si. In order words, the universal finite-size correction is the same for 
a plain hard wall and for an ideal conductor wall, unlike in the strip 
geometry. 
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4.3. The O n e - C o m p o n e n t  Plasma 

We consider the same model as in Section 3.4, but in the disk 
geometry. The electric potential generated by the background is 
- �89 z - r'-). The background self-energy adds to the grand potential a 
term �88 2. The eigenvalue integral equation now is 

m ~ R  
f exp[zul(R2--rZ)] qs(r') d2r ' =~b(r) (4.17) 

2~ o ~' z - -  R z 

Again we notice that ~k is analytical. Because of the rotational invariance, 
~b must depend on 0 through a factor exp(ilO), and therefore ~O(r) = z t, with 
l a nonnegative integer. Using this form in (4.17), we have the relation 
between 2 and l 

2 exp(nqR 2) Io exp( - ~ q r  2) dr = 1 (4.18) 

where again e is the imposed minimum particle-wall distance. The grand 
potential becomes, after some manipulations, 

+oo [ mRexp(nqR2)  7(l+ 1, gr/(R--t)2)] (4.19) fig2= (rot/R2) 2 -  ~ In l q 2(~r/R2)/+ l 
I = 0  

where 7(n, x)=~'~ t " - l  e x p ( - t )  dt is the incomplete gamma function. Let 
N = r u l R  2. We split the sum over I in Eq. (4.19) into a sum S~ for O<~l<<.N 
and a sum $2 for l > N. Using 

(4.20) 

we have in the limit R ~ + oo 

S~ = ( N +  1) In ( - ~ - )  

N 

+ ~ [ - ( l + l ) l n N + N + l n l ! ]  
I = 0  

/ = 0  !~/ 

(4.21) 



630 Jancovici and T611ez 

Using Stirling's formula, the asymptotic formulas for R ~ + 

~" ln l !=(N+ l ) lnN!- -~- lnN 
I=0  

N 2 1 
+ - ~ - - ~  Nln N - 1 1 n  N +  O(1) (4.22) 

and 

1 
y(l + 1, ml(R-  e) 2) 

1 [ l + e r f (  N - I  ) ]  ( ~ N )  ='~ (2N)l/2--e(2rtrl) 1/2 + 0  (4.23) 

we obtain 

Sl =-~ (nrIR2) 2 + nrlR z In - g  In R 

+(2z~q),/2R ~o~ {(2~ Z/2 ,, 1 } - -  e-"  +-~[l +erf(t-e(2nq)l/2)] +O(1)  

(4.24) 

In S 2 w e  use (4.23) and (4.20) to find 

{ m } S~ =(2ztrl)l/2R f dtln l + e'2[1 -erf(t+e(2nrl)t/2)] 
" ~o (4.25) 

Putting (4.24) and (4.25) in (4.19), we have 

~s _~pbttR,_ + 2rrRp(yll) + t2) = y~ )+~lnR+O(1)  (4.26) 

where the bulk pressure Pb is given by (3.46) and " (~) and ~(~1 yc are given by 
(3.48) and (3.50). We find the universal finite-size correction (1/6)In R. 

It is interesting to compare the surface tension for the one-component 
plasma in the limit e ~ 0 and the surface tension for the two-component 
plasma in the limit a ~ 0. We have in that limit for the one-component 
plasma 

fl(?~l) + (2) m ?c ) ~~-~ln e (4.27) 



Coulomb Systems as Critical Systems 631 

and for the two-component plasma 

m 
fiT,. ~ ~ In a (4.28) 

The surface tension of the one-component plasma is one-half that of the 
two-component plasma. 

5. CONCLUSION 

Provided a Coulomb system is a conductor, its grand potential has 
universal finite-size corrections very similar to those which occur for a 
simple critical system: the massless Gaussian field theory. The boundary 
conditions, however, play an important role. In the geometry of a slab, if 
the boundaries are ideal conductor walls, a Coulomb system has a grand 
potential with a universal finite-size correction which is just the opposite of 
the one found for a Gaussian field with Dirichlet boundary conditions; but 
if the boundaries are plain hard walls, the Coulomb system no longer 
exhibits that finite-size correction. In the geometry of a disk, a two-dimen- 
sional Coulomb system has a finite-size correction to its grand potential 
which is the same one for an ideal conductor wall and for the previously 
studied ~-~1 case of a plain hard wall (in both cases, again the correction is 
opposite to the one occurring for the Gaussian field). An argument given 
in ref. 2 essentially says that a Coulomb system with plain hard walls looks 
somewhat like an ideal conductor when seen from the outside; this might 
be relevant for explaining how the curved boundary of a disk generates the 
same correction (1/6) In R in both plain hard wall and ideal conductor wall 
cases. Nevertheless, a unified treatment of the different possible boundary 
conditions still has to be found. 

In the case of a slab with ideal conductor walls, the finite-size correc- 
tion to the grand potential of a Coulomb system was derived on the sole 
basis of the screening effect (Section 3.2). A more general derivation on the 
basis of the screening effect should be found for other geometries and 
boundary conditions. 
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